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ABSTRACT: We performed kinetic Monte Carlo simulations
on a model of a polymerization process in the presence of a
periodic oscillatory flow to explore the role of mixing in
polymerization reactors. Application of an oscillatory flow field
helps overcome the diffusive limitations that develop during a
polymerization process due to an increase in the molecular
weights of polymer chains, thereby giving rise to high rates of
polymerization. A systematic increase in the flow strength
results in a “dynamic” coil−stretch transition, leading to an elongation of polymer chains. Reactive ends of stretched (polymer)
chains react more frequently than the reactive ends of coiled chains, which are screened by other monomers of the same chain.
There exists a critical flow strength for the efficiency of polymerization processes. The kinetic Monte Carlo simulation scheme
developed here exhibit great promise for the study of dynamic properties of polymer systems.

Most industrial polymerization processes have a rate-
determining propagation step, where small polymer

chains combine to form longer chains.1 Since longer chains
diffuse slowly,2 polymerization process becomes progressively
slower with the increase in molecular weights of polymer
chains. The rate of polymerization can therefore be enhanced
by the use of mixing equipments that overcome the diffusive
limitations associated with concerted movements of the
segments of polymer chains. Besides, mixing provides the
means to control the homogeneity of the resulting product.
Design of these mixing equipments is often dictated by
macroscopic principles3 and a complete molecular basis is not
available. This is partly because of the lack of reliable
computational schemes to describe dynamics in polymerization
processes. Also, from a theoretical perspective, kinetics of
polymerization is a superposition of two complex areas of
chemical reactions4,5 and polymer statistics,6 which show close
resemblance to critical phenomena.7

Because of the enormous computer times required to study
polymeric systems on an atomic resolution, a variety of
mesoscale simulation approaches based on coarse-grained
models (e.g., bead−spring models2) have been developed. In
particular, Monte Carlo simulations of coarse-grained polymer
models have been highly successful in determining the generic
features of many polymeric systems at thermodynamic
equilibrium.8 However, approaches aimed at studying dynamic,
nonequilibrium properties (e.g., Brownian dynamics9) have not
achieved a similar success due to long relaxation times of
polymeric systems. Because Brownian dynamics is based on the
numerical integration of a stochastic equation of motion, choice
of time step is limited by the magnitude of interaction forces.
For example, a time step must be small enough to ensure that
unphysical moves (e.g., violation of hard core) are not
permitted. To address this problem, we have recently

developed a kinetic Monte Carlo (kMC) simulation scheme10

wherein the transition probabilities of particle movements are
taken identical to the transition rates of particle concentrations
in a renormalized version of diffusion equation. The choice of
time step in the kMC scheme is independent of the magnitude
of interaction forces and is a function of Monte Carlo step size;
unphysical movements have zero transition probability and are
not allowed.
In this communication, we illustrate the use of the kMC

method for the study of dynamic problems in polymeric
systems. As a case in point, we consider the use of periodic
oscillatory flow field11 to promote mixing in a polymerization
process. The flow is considered ideal; the polymer beads are
“passively” convected by flow and cannot change the flow. Such
flow models, though simplistic, capture the repertoire of
complex mixing behavior displayed by industrial mixers.12,13

The polymerization process is described using a “toy”-model,
wherein bead−spring polymer chains with reactive ends
combine to form longer chains. Results indicate that the rate
of polymerization can be greatly enhanced by the use of flow
fields. Moreover, application of flow field results in the
formation of elongated polymeric chains as opposed to nearly
spherical polymer chains formed with no applied flow.
Therefore, oscillatory flow-field provides a promising means
to increase polymerization rates and dynamically control the
physical properties of resulting polymers.
Polymerization processes are usually described by the kinetic

modeling of associated reaction mechanisms. For most
polymerization processes, reaction mechanisms include ini-
tiation, propagation, chain transfer, and termination steps.14
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The knowledge of the rate constants of individual reaction steps
is therefore mandatory to establish the rates of polymerization,
which may in turn be obtained from comparisons with
experimental data. Such a description is, however, chemistry-
dependent and will not be considered here. Instead, we
developed a generic description using a “toy”-model shown in
Figure 1. The polymer chains are assumed to be composed of

coarse-grained beads connected by FENE springs.15 That is, the
energy stored in the bonds of length l is given by
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Here, l0 = 1.5σ is the maximum allowed bond length, with σ
being the diameter of polymer beads taken as the length scale.
K = 30ε/σ2 is the effective spring constant, where ε is the
energy scale. We keep ε = kBT; kB and T are the Boltzmann
constant and temperature, respectively. The effect of excluded
volume of polymer beads are incorporated using a Lennard−
Jones potential
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between all pairs (i, j) of particles; rcut = 21/6σ is the cutoff
distance and Ecut is chosen such that Uij,LJ(r) is continuous at r
= rcut.
When the above coarse-grained description of a polymer is

used, a minimal model of polymerization (Figure 1) is
construed in the following way. We begin with a system of
reactive dimers in an implicit solvent. Two dimers combine
when the distance between their ends (d) is less than a
threshold distance rt = 1.5σ and a new bond is formed between
the reacted ends. The reacted ends become inert and a 4-bead
chain with reactive ends begins to search other dimers/chains
in the system. This process continues to result in chains with an

increasing number of beads (degree of polymerization) with
time. We propose the application of a sinusoidal shear flow with
the direction of the shear periodically alternating in x, y, and z
directions. That is, the flow velocity is given as
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where

π=h u u L( ) sin(2 / )m (4)

Here, V0 is the maximum flow velocity, tm is a characteristic
“mixing time”, n is the number of mixing cycles, and Lm = V0tm
is the characteristic “mixing length”.
Even though our model appears to be an oversimplification

of the actual polymerization process, it does capture the
essential characteristics of the process, as demonstrated in this
work. This is because, in a system with chemical reactions, the
details of interactions between particles and the mechanism of
their migration are often less important than the statistical
properties of particle trajectories. Thus, a more detailed flow
model or an inclusion of hydrodynamic effects is not needed to
explain the effects of mixing on polymerization reaction. In a
diffusion-controlled reaction, the kinetics is well characterized
by the diffusivity and density of particles. In systems with
mixing, an additional parameter is needed to characterize the
relative strength of advective and diffusive transport. We use a
dimensionless parameter, Pećlet number (Pe = LmV0/D), which
is defined as the ratio of the characteristic advection (mixing)
time, tm = Lm/V0, and the diffusion time, td = Lm

2 /D, where D is
the diffusion constant of polymer beads in solution. Similar flow
characterization have been employed in prior studies of
reactive11,16 and nonreactive17 systems. Typical values of Pe
in industrial processes is in the range of 100 to 1010 and high
values of Pe signify high amounts of advective mixing.16

Smoluchowski diffusion equation for the probability density
of finding a particle at a given location r at time t, c ≡ c(r, t), is
given by2
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Here, j ≡ j(r, t) is the flux of the particle, F ≡ F(r) is the
external force, and β = 1/kBT. In our recent work,10 we have
proposed the solution of these equations by renormalizing
them into an associated Master equation. This serves as a basis
of our kMC scheme that uses the definition of transition
probabilities identical to the definition of transition rates in the
master equation. That is, the attempted movements are
accepted/rejected with the probability
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where rold and rnew are the old and new positions and ΔE is the
energy difference associated with the movements. A kMC step
consists of an attempted move of one particle with a finite step
size a but random orientation determined by the choice of
spherical angles (refer to the original paper10 for implementa-
tion details). A kMC sweep is defined as the attempted moves

Figure 1. We model a system of dimers with reactive ends (red) that
combine to form longer chains having inert intermediate beads
(yellow) when they come close within a threshold distance rt.
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of all particles in the system and corresponds to a step in time
given by
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where τ0 = σ2/D is a convenient unit of time.
An extension of the kMC scheme to include effects of fluid

flow is straightforward. Smoluchowski equation with fluid flow
is given as

β

∂
∂

+ ·∇ = ∇·

= ∇ −

c
t

c

D c c

V j

j F( ). (8)

When an incompressibility condition ∇ · V = 0 is used, this
equation can be written in a form similar to eq 5, where F now
includes a nonconservative force given as
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The nonconservative part of the energy difference is given by
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assuming V changes by a negligible amount in a kMC step.
Here, a = rnew − rold, such that |a| = a
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with ax, ay, and az being the components of a, and Q = V0a/D =
Pe(a/Lm). A value of Q < 1 warrants reasonable acceptance rate
of kMC movements.
The energy difference in an attempted move is now

determined using eqs 1, 2, and 10. The moves are accepted/
rejected using the transition probability defined in eq 6. The
coordinates of particles are updated after every accepted kMC
step. Because a kMC sweep equals a step in time given by eq 7,
the number of kMC sweeps required to simulate a real time t is
given by
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The frequency of mixing can now be estimated as
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We have used a step size of a = 0.02σ in all simulations. A
simulation box of size L = Lm is employed for simplicity.
However, in principle, the ratio L/Lm can be varied to change
the number of periods of sinusoidal velocity field inside the
simulation box.
We begin with analyzing the effect of system density on the

polymerization rates with no applied flow (Pe = 0). Figure 2a
shows the typical simulation snapshots at an instant in time for
different packing fractions of polymer, ρ = 2Ndσ

3/L3, where Nd

is the number of dimers in the simulation box at the beginning
of the simulation. As expected of a polymer undergoing a self-
avoiding walk, most of the chains adopt a coiled conformation
with a nearly spherical shape. However, as shown in Figure 2b,
the presence of an applied flow (Pe > 0) gives rise to stretched
conformations, in particular, at high Pe (Pe = 10000 in the
figure). The progress of the polymerization is monitored by
recording the time evolution of number-averaged degree of
polymerization (Figure 3), Mn = ∑iniMi/∑ini, where ni is the

Figure 2. Simulation snapshots for (a) different packing fractions (ρ)
with no applied flow (Pe = 0) and (b) different flow strengths (Pe) for
ρ = 0.016. Results are for simulations starting with 1000 dimers after
time t = 100τ0. Snapshots are zoomed in for clarity. Bold and faded
colors represent distances closer and farther from the eye, respectively.

Figure 3. Time evolution of (a) average degree of polymerization for
different packing fractions (ρ) with no applied flow (Pe = 0); (b)
average degree of polymerization for different flow strengths (Pe) for a
packing fraction of 0.02. Results are for simulations starting with 10000
dimers in the simulation box.
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number of polymer chains with Mi beads. As is evident from
Figure 3a, the polymerization rate increases with an increase in
the packing fraction of polymer, which is expected because the
reactive ends find each other more frequently in a dense system
than compared to a dilute system. Further, the rate of
polymerization decreases with an increase in Mn and becomes
very small at certain high value of Mn (Mn ≈ 17 and Mn ≈ 9 for
ρ = 0.0926 and 0.02, respectively) with no applied flow (Pe =
0). This behavior can be changed by applying flow, as shown in
Figure 3b. An increase in flow strength increases the rate of
polymerization and the system can reach much high degrees of
polymerization (Mn ≈ 16 for Pe = 10000, as opposed to Mn ≈ 9
for Pe = 0 at t = 30τ0). This can be explained by noting that the
effective diffusion of polymer chains decreases with an increase
in their degree of polymerization (molecular weight). Because
in the absence of an applied flow, diffusion is the sole
mechanism for the reactive ends to meet, the polymerization
rate decreases sharply with an increase in Mn. On the contrary,
in the presence of an applied flow, reactive ends can meet
through both diffusion and advection. While the diffusion rates
decrease with an increase in Mn, advection rates are not
affected, leading to a persistent growth of polymerization.
It is interesting to note that the polymerization rate does not

show a monotonic dependence on the flow strength. For small
flow strengths (Pe < 1000 in Figure 3b), the time evolution of
Mn is almost similar to the case when no flow is applied (Pe = 0
in Figure 3b). However, significant deviations are observed for
Pe ≳ 1000, beyond which polymerization rates are much higher
than the case without flow. This nontrivial result needs a
physical explanation. As evident from the snapshots for small Pe
in the left of Figure 2b, most polymer chains are in coiled state.
The reactive ends of these coiled polymer chains are screened
(surrounded) by other beads of the same chain and thus finds it
difficult to reach reactive ends on other polymer chains. On the
contrary, for large Pe (right of Figure 2b), polymer chains are
mostly elongated and the reactive ends can easily find each
other. This shows an interesting connection between the
polymerization kinetics and the well-known coil−stretch
transition.6 To make this argument more concrete, the shape
of the chains are characterized using the shape anisotropy
parameter18 defined as
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where Ri
2 are the eigenvalues of the radius of gyration tensor.

The values of A3 are in the range A3 ∈ [0,1]; A3 = 1 for a chain
extended in one-dimensional only and A3 = 0 for a spherical
chain. As shown in Figure 4a, A3 = 1 at time t = 0 for the system
of dimers (dumbbells). As the polymerization proceeds, A3
decreases signaling that the chains fold as they grow. However,
A3 settles to a higher value for high Pe values (≈0.6 at t = 30τ0
for Pe = 10000) when compared to low Pe case (≈0.35 at t =
30τ0 for Pe = 0−100). The transition from the coiled state with
low A3 to a stretched state with high A3 occurs at Pe ≥ Pec ≈
1000, which can be described as the critical flow strength for
coil−stretch transition. It is worth noting that coil−stretch
transitions have also been reported in earlier studies of single
polymer in shear flow19 and ensemble of polymers in isotropic
turbulence.20 Moreover, a positive influence of shear on
polymerization rates have been established in experiments on
rodlike polymers.21,22

As is evident from the snapshots in Figure 2, our system is
highly polydispersed during polymerization, with a mix of short
and long chains. For the sake of illustration, the magnitude of
polydispersity (defined as Mw/Mn, where Mw = ∑iniMi

2/∑iniMi
is the weight averaged degree of polymerization10) varies from
1.2−1.4 for Pe = 0−1000 to ≈2.2 for Pe = 10000 for the system
in Figure 3b at t = 30τ0. To establish that the flow indeed
results in elongation of polymer chains and the behavior
depicted in Figure 4a is not a mere artifact of polydispersity, we
also perform simulations on monodispersed systems without
polymerization reaction. Instead of starting with dimers, we
start with chains having number of beads approximating equal
to the limiting values of Mn in Figure 3b (at t = 30τ0), meaning
Mn = 9, 9, 11, and 15 for Pe = 0, 100, 1000, and 10000,
respectively. A behavior similar to Figure 4a is also attained for
a monodispersed system without polymerization reaction
(Figure 4b), implying that this transition is induced by the
flow alone. It is worth noting that A3 relaxes to a stable value in
a shorter time in the case without polymerization reaction
(Figure 4b) than compared to the case with polymerization
reaction (Figure 4a). This is because, in Figure 4a, chains are
growing while they are being stretched by flow, unlike Figure
4b, where the degree of polymerization of chains are fixed.
Because our objective in this study was to demonstrate the

effect of coil−stretched transition induced by flow on the
polymerization kinetics, we limit ourselves to Pe ≤ 10000 in
this study. While higher magnitudes of Pe can be studied by our
approach, a fine-tuning of step size (fixed at a = 0.02σ in this
study) is required to ensure that the numerical error of
approximating the integral in eq 10 is within tolerable limits. A
very small value of a would, however, require much longer

Figure 4. Time evolution of shape anisotropy parameter (A3) for
different flow strengths (Pe): (a) for simulations starting with 10000
dimers in the simulation box for a packing fraction of ρ = 0.02 with
polymerization reaction; (b) for simulations starting with 1000 chains
with varying degrees of polymerization (see text) in the simulation box
for a packing fraction of 0.02 without polymerization reaction.
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computation times. Note that this is not a limitation of our
kMC approach, per se, but is also present in approaches that
employ numerical integrations of equations of motion (e.g.,
Brownian dynamics9), where similar limitations apply in the
choice of time step. At extremely high Pe values, when the
chains are expected to be fully stretched, one useful strategy to
counter this problem is to constrain the bond lengths and use a
continuous tension along the chain.23 From a modeling
perspective, the polymerization model can be extended to
include additional mechanistic details (e.g., initiation/termi-
nation steps) or specific reaction rate laws; the current model is
limited to the propagation step and has a single parameter rt
(threshold distance for the reactive ends to combine) defining
the reaction rate. In a similar vein, the method can be extended
to include the effects of hydrodynamic interactions, since the
current model considers the polymer beads to be passively
convected by flow. As alluded to earlier, we believe that these
modifications do not affect the key results of our study but may
be useful for the quantitative prediction of polymerization rates
in specific cases.
In summary, we have developed a generic, “toy”-model of

polymerization process under the influence of mixing provided
by an applied flow. Though simplistic, the model captures
essential kinetic information needed to study the effects of flow
on polymerization processes. Results indicate an increase in
polymerization rates and a “dynamic” coil-stretched transition
by the application of a periodic oscillatory flow field. There
exists a critical flow strength, beyond which the polymerization
rates increase sharply and the chains go from coiled to
stretched states. Simulations are performed using the recently
developed kinetic Monte Carlo simulation scheme10 to the
study of polymerization processes under flow. Several
modifications are made in the original scheme to account for
the nonconservative forces that arise in the presence of an
applied flow field. The methods developed in this communi-
cation can be applied to the study of polymer systems under
influence of more complex flow fields or other kinds of external
fields (e.g., electric field, magnetic fields, etc.).
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